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Abstract—Java Native Interface (JNI) provides a way for Java
applications to access native libraries, but it is difficult to develop
correct JNI programs. By leveraging native code, the JNI enables
Java developers to implement efficient applications and to reuse
code written in other programming languages such as C and C++.
Besides, the core Java libraries already use the JNI to provide
system features like a graphical user interface. As a result, many
mainstream Java Virtual Machines (JVMs) support the JNI.
However, due to the complex interoperation semantics between
different programming languages, implementing correct JNI
programs is not trivial. Moreover, because of the performance
overhead, JVMs do not validate erroneous JNI interoperations
by default, but they validate them only when the debug feature,
the -Xcheck:jni option, is enabled. Therefore, the correctness of
JNI programs highly relies on the checks by the -Xcheck:jni
option of JVMs. Questions remain, however, on the quality of the
checks provided by the feature. Are there any properties that the
-Xcheck:jni option fails to validate? If so, what potential issues
can arise due to the lack of such validation? To the best of our
knowledge, no research has explored these questions in-depth.

In this paper, we empirically study the validation quality and
impacts of the -Xcheck:jni option on mainstream JVMs using
unspecified corner cases in the JNI specification. Such unspecified
cases may lead to unexpected run-time behaviors because their
semantics is not defined in the specification. For a systematic
study, we propose JUSTGEN, a semi-automated approach to
identify unspecified cases from a specification and generate test
programs. JUSTGEN receives the JNI specification written in
our domain specific language (DSL), and automatically discovers
unspecified cases using an SMT solver. It then generates test
programs that trigger the behaviors of unspecified cases. Using
the generated tests, we empirically study the validation ability
of the -Xcheck:jni option. Our experimental result shows that
the JNI debug feature does not validate thousands of unspecified
cases on JVMs, and they can cause critical run-time errors such
as violation of the Java type system and memory corruption. We
reported 792 unspecified cases that are not validated by JVMs
to their corresponding JVM vendors. Among them, 563 cases
have been fixed and the remaining cases will be fixed in near
future. Based on our empirical study, we believe that the JNI
specification should specify the semantics of the missing cases
clearly and the debug feature should be supported completely.

Index Terms—Java Native Interface, Java Virtual Machine,
Testing, Empirical Study, Debugging

I. INTRODUCTION

Java developers use the Java Native Interface (JNI) in
various application domains including games and multimedia,
and mainstream Java Virtual Machines (JVMs) [1]–[4] support

the JNI. The JNI is an interface that defines interoperation
between Java code and native code written in C or C++.
Using the JNI, developers can improve the performance of
programs by implementing performance-critical modules in
native code and composing them with Java modules into
a single program via the JNI. In addition, the JNI reduces
software development cost by allowing Java modules to reuse
existing native libraries.

However, building correct JNI programs is a difficult task
due to the complex interoperation semantics between different
languages. In addition, because the JNI specification does not
describe the interoperation semantics completely, the seman-
tics of numerous cases are unspecified, which may lead to
unexpected behaviors. Note that the JNI does not check for
programming errors for the following reasons [5]:

• Forcing JNI functions to check for all possible
error conditions degrades the performance of
normal (correct) native methods.

• In many cases, there is not enough run-time type
information to perform such checking.

While compilers can detect compile-time errors and provide
useful debug features for programs written in a single pro-
gramming language, they cannot find bugs in interoperation
between Java and native code. Furthermore, no publicly avail-
able tools can detect such interoperation errors.

The JNI supports the -Xcheck:jni option to help developers
to diagnose problems in JNI programs, but the specification
does not define its semantics clearly. The -Xcheck:jni option
is a command-line option that causes the VM to do additional
validation on the arguments passed to JNI functions [6], [7].
However, the additional validation is not well defined:

Note: The option is not guaranteed to find all invalid
arguments or diagnose logic bugs in the application
code, but it can help diagnose a large number of
such problems.

Because the specification does not specify which problems
the option diagnoses, JNI programs may behave differently
on different JVMs depending on their implementation of the
option, which makes reasoning of JNI programs challenging.

In this paper, we study the semantics of the -Xcheck:jni
option and its impacts on mainstream JVMs. Our approach



is to generate test programs for “unspecified cases,” which
are interoperation semantics that are not defined in the JNI
specification, to execute the test programs on JVMs with
the -Xcheck:jni option enabled, and to inspect the execution
results. Our study has two technical challenges: 1) how to
identify unspecified cases in the JNI specification, and 2)
how to generate test programs that trigger the behaviors
of unspecified cases. For a systematic study, we propose
JUSTGEN, a semi-automated approach to identify unspecified
cases and generate test programs. We first define a domain
specific language (DSL) that can express the JNI interoper-
ation semantics such as the return types and parameters of
JNI functions. Then, we manually transform the interoperation
semantics written in a natural language in Chapter 4 of the
JNI specification [8] to a mechanized specification expressed
in our DSL. Because the English phrases used to specify the
interoperation semantics are well structured and use specific
patterns, manually converting them to the DSL is considerably
straightforward. Then, JUSTGEN receives the mechanized
specification, automatically extracts unspecified cases from
the specification, and generates test programs that provoke
them. JUSTGEN leverages an SMT solver to find unspecified
cases by verifying whether the specification describes all the
conditions of JNI function calls. If JUSTGEN identifies a
condition of a JNI function call that the specification does
not describe, it considers the condition as an unspecified case.
For test code generation, JUSTGEN takes an unspecified case
and synthesizes C code consisting of JNI function calls with
arguments that satisfy the conditions of the unspecified case. It
then compiles and links the synthesized C code with prepared
Java modules to generate an executable JNI program.

Using 34,990 test programs generated by JUSTGEN, we
empirically evaluated the -Xcheck:jni option on five main-
stream JVMs. Our study shows that thousands of unspecified
cases are not validated by JVMs, and they can cause critical
run-time errors such as run-time type errors and memory
corruption. In addition, we found a bug of the -Xcheck:jni
option, which leads to deadlock between multiple threads.
We also observed that the -Xcheck:jni option of HotSpot,
Zulu, Corretto, and GraalVM validate similar properties, but
OpenJ9 validates properties significantly different from them.
We reported the problems of the -Xcheck:jni option to their
JVM vendors, and among 792 reported unspecified cases, 563
cases have been fixed. The tool used for the empirical study
and the identified unspecified cases are publicly available1.

The contributions of this paper include the following:
• We present an approach to identify unspecified cases

from a specification and implement JUSTGEN that
automatically identifies them from a mechanized spec-
ification and generates test code provoking them. We
believe that JUSTGEN is applicable to other specifica-
tions with only changes in test code generation.

• We identify unspecified cases from the JNI specifica-
tion. Describing the semantics of the identified unspeci-

1https://github.com/sjmini/justgen.

1 public class HelloJNI{
2 static{ System.loadLibrary("Hello"); }
3 private native String foo();
4 public static void main(String[] args){
5 String n = new HelloJNI().foo();
6 ... }
7 private String name(){
8 return this.getClass().getName(); }
9 }

(a) Java code

1 jmethodID get_name_id(JNIEnv *env, jobject obj){
2 jclass cls = (*env)->GetObjectClass(env, obj);
3 return (*env)->GetMethodID(env, cls, "name",

"()LJava/lang/String;");
4 }
5 jstring Java_HelloJNI_foo(JNIEnv *env, jobject

thisObj){
6 jmethodID mid = get_name_id(env, thisObj);
7 return (*env)->CallObjectMethod(env, thisObj,

mid);
8 }

(b) Normal JNI interoperation in C code

1 jstring Java_HelloJNI_foo(JNIEnv *env, jobject
thisObj){

2 jmethodID mid = get_name_id(env, thisObj);
3 jcharArray arr = (*env)->NewCharArray(env, 2);
4 return (*env)->CallObjectMethod(env, arr,

mid);
5 }

(c) Unspecified JNI interoperation case in C code

Fig. 1: JNI code example for normal and unspecified behaviors

fied cases in the JNI specification would make consistent
behaviors of JNI programs on different JVMs.

• It is the first work that analyzes the quality of the
-Xcheck:jni option on five mainstream JVMs. Our
empirical study reports limitations of the -Xcheck:jni
option, and JVM vendors fixed 563 among 792 reported
cases. We believe that our work would be helpful in
enhancing the quality of the JNI debug feature on JVMs,
which in turn improves the quality of JNI programs.

II. BACKGROUND AND MOTIVATING EXAMPLE

A. JNI Interoperation

The JNI is a foreign function interface that enables bidi-
rectional interoperation between Java and native applications.
Figure 1(a) shows Java code that has an entrypoint of a
JNI program, and Figure 1(b) shows C code compiled to
a native library Hello.so. In Java, a class HelloJNI has
two Java methods, main and name, and a native method
foo declared with the native keyword. The native method
is linked with a C function Java_HelloJNI_foo, when
executing the System.loadLibrary method at line 2. When
the program runs, the main method calls the native method
foo at line 5. Then, the JVM transfers the program control
to the entry of the linked C function Java_HelloJNI_foo.
In C code, the function Java_HelloJNI_foo calls the Java



method name via a sequence of three JNI function calls. At
line 6 in Figure 1(b), the C code obtains a Java method ID by
calling get_name_id defined at line 1. The function calls the
GetObjectClass JNI function that takes a JNIEnv pointer
and a Java object and returns class information of the Java
object. Then, it calls GetMethodID to obtain a Java method
ID using the class information, a method name, and a method
signature. Using the method ID and the Java object, it calls the
Java method name via the CallObjectMethod JNI function.

B. Unspecified Cases and the JNI Debug Feature

Because JVMs do not validate argument values at run-time
due to its performance overhead, the unspecified cases may
lead to unexpected behaviors or even security vulnerabilities
like memory corruption. Figure 1(c) shows one unspecified
case for the JNI function CallObjectMethod. The function
Java_HelloJNI_foo gets an ID of the Java method name

via the get_name_id function as the same as (b). However,
at line 4, it tries to call the Java method name using a Java
character array object created at line 3 instead of the Java
object propagated from Java. The JNI specification describes
the behavior of CallObjectMethod as follow [8]:

NativeType Call<type>Method(JNIEnv *env,

jobject obj, jmethodID methodID, ...);

Methods from these three families of operations are
used to call a Java instance method from a native
method. · · · the methodID must be derived from the
real class of obj, not from one of its superclasses.

However, in the example, because the method ID is derived
from HelloJNI while a class of this is a character array,
its behavior is not specified, which can cause problems on
mainstream JVMs. For example, calling CallObjectMethod

at line 4 triggers a segmentation fault on the HotSpot JVM,
but executes normally on the OpenJ9 JVM producing a wrong
result. After normal execution, the variable n has a string value
[C at line 5 in (a), instead of HelloJNI, which is wrong in
the Java semantics, because a this object in a Java method
must be an instance of a class having the method.

To prevent segmentation faults or abnormal executions from
JVMs due to the unspecified JNI interoperation semantics,
the JNI provides a debug feature, the -Xcheck:jni option, but
it does not guarantee to find all problems and its semantics
depends on the implementation on JVMs. The -Xcheck:jni
option enables JVMs to validate arguments passed to JNI
functions [7]. If argument values are not valid, JVMs stop
execution and report errors or warnings. For example, when
executing the example in Figure 1(c) on the OpenJ9 JVM with
the -Xcheck:jni option enabled, the JVM detects the invalid
argument and throws an exception with the error message: JNI
error in CallObjectMethod/CallObjectMethodV:

Ineligible receiver. However, because the debuggability
highly relies on JVMs, invalid interoperation in JNI programs
may still remain undiscovered after the debugging process,
which degrades the quality of JNI programs.

In this paper, we leverage unspecified cases to evaluate the
quality of the -Xcheck:jni option on mainstream JVMs. We be-

lieve that unspecified cases are useful resources to evaluate the
-Xcheck:jni option since developers might have missed them
because they are not described in the specification.

III. METHODOLOGY

A. Overview

To evaluate the quality of the -Xcheck:jni option, we
test JVMs with unspecified cases that are semi-automatically
extracted from the JNI specification. Figure 2 presents an
overview of our testing approach consisting of two phases.

In the JNI Unspec. Code Generation Phase, JUSTGEN ex-
tracts unspecified cases from the JNI specification and gen-
erates test programs that provoke the behaviors of the un-
specified cases. Since the specification is written in a natural
language that is not suitable for automated processing, our
first step is to define a domain specific language (DSL) and
to manually transform the semantics in the specification to a
mechanized specification in the DSL. Then, Unspec. Extractor
discovers unspecified cases from the mechanized specification
by utilizing an SMT solver. It encodes the mechanized speci-
fication as logical formula in a way that the SMT solver can
recognize, and leverages the SMT solver to determine whether
a formula is unsatisfiable. If the formula is satisfiable, the
SMT solver generates a counterexample of such a case. The
counterexample denotes an unspecified case with a possible
argument combination. Similar to CounterExample-Guided
Abstraction Refinement (CEGAR) [9], Unspec. Extractor up-
dates the specification by adding the identified unspecified
case, and repeats the above process until the formula becomes
unsatisfiable. Among various SMT solvers, we used Z3 [10].
For each unspecified case, Test Code Generator automatically
generates a sequence of valid JNI function calls that triggers
the behavior of the unspecified case. Then, it composes the
JNI function calls with a Java and C template code that we
defined.

In the JVM Testing Phase, we execute the generated test
programs on mainstream JVMs with the -Xcheck:jni option
enabled. Because different JVMs may produce different re-
sults, we manually inspect the test results and analyze the
capability of the debug feature of each JVM, and identify
potential hazards due to the lack of validation from JVMs.

B. JNI Specification in a Domain Specific Language

For automatic processing of the JNI specification, we define
a simple DSL to describe the behaviors of JNI functions.
Because the expected behaviors of JNI functions are defined
in Chapter 4 of the JNI specification [8], we manually trans-
formed them to a mechanized specification expressed in the
DSL. Since the JNI function behaviors are written in a well-
structured phrases using specific patterns, manually converting
them to the DSL is considerably straightforward.

Figure 3 presents the DSL syntax. A specification s is a
sequence of type declarations typedef t, a sequence of refine-
ment predicate declarations refinedef t@p, and a sequence
of JNI function specification d. Types t denote types in the



Fig. 2: Overall structure of JVM testing with unspecified cases

rule{
type void SetIntArrayRegion(JNIEnv*, jintArray, jsize, jsize, jint*)
spec void SetIntArrayRegion(JNIEnv*, jintArray@NotNULL, jsize@ValidIndex, jsize@ValidIndex,

jint*@NotNULL)
unspec void SetIntArrayRegion(JNIEnv*, jintArray@isNULL, jsize@ValidIndex, jsize@ValidIndex,

jint*@NotNULL)
...

}
Fig. 4: Example JNI function specification in DSL

s := typedef t refinedef t@p d

d := rule {type t F (t) κ t[@r]? F (t[@r]?)}
κ := spec | unspec

r := p | r ∧ r

Fig. 3: Domain specific language to define the JNI semantics

C programming language including primitive types and pre-
defined types for the JNI in jni.h. A refinement predicate
p denotes a predicate name, which returns whether an input
satisfies its condition. A refinement type [11] t@p denotes a
set of values that have the type t and satisfy the refinement
predicate p. For example, a set of all negative integer values
is denoted as int@isNegative where isNegative is
a predicate returning whether an input is a negative integer.
A JNI function specification d consists of a JNI function
descriptor and a sequence of refined function descriptors. A
JNI function descriptor type t F (t) denotes a return type t,
a JNI function name F , and a sequence of parameter types t.
A refined function descriptor κ t[@r]? F (t[@r]?) denotes an
optionally refined return type t[@r]?, a JNI function name F ,
and a sequence of optionally refined parameter types t[@r]?
where κ is either spec or unspec. A refinement r is a
refinement predicate p or its conjunctions. For our research,
we defined 38 types and 105 refinement types [12], [13]. To
distinguish function descriptors JVMs do not verify return
values of JNI functions, but because we use return types in
test code generation as described in Section III-D, we include
return types in refinement types. specified in the specification
and those constructed while finding unspecified cases using
the SMT solver, we use spec for the former and unspec for

the latter.
Figure 4 shows an example JNI function specification

in DSL. The JNI function SetIntArrayRegion takes a
JNI environment pointer JNIEnv*, a Java array of integers
jintArray, an integer value representing the start index of
an array jsize, an integer value indicating the number of
elements to be copied jsize, and the source buffer (jint*).
The function copies a specified number of elements from
the source buffer to the Java array. According to the JNI
specification, the Java array must not be NULL, the start
index and the number of elements must be greater than or
equal to zero, and the source buffer must not be NULL as
well. We transform the above specification in the DSL as
the spec statement with refinement predicates representing
the conditions for valid argument values. In this example,
NotNULL denotes that input values should not be NULL, and
ValideIndex denotes that input values must be greater than
or equal to zero. In addition to the spec statement, various
unspec statements are automatically generated in the process
of finding unspecified cases of the JNI function as we discuss
in the next subsection.

C. Finding Unspecified Behaviors with an SMT Solver
We leverage the Z3 SMT solver version 4.8.1 to find

unspecified cases automatically from the mechanized JNI
specification. To use the SMT solver, we convert the unspec-
ified case finding problem to an SAT problem. For example,
for a JNI function specification spec t1@r1 F (t2@r2), we
extract a boolean formula as follows: is there a refined type
x that is matched with the type t2 but is not covered by
the specification t2@r2? When the formula is satisfiable,
the SMT solver produces an example satisfiable cases; the



produced example is an unspecified case. Then, we update the
boolean formula including the unspecified case to find another
unspecified case. We repeat the process to find unspecified
cases until the boolean formula is not satisfiable, which means
that no more unspecified cases exist.

1) Bit vector representation for JNI function specification:
We use bit vectors to represent each JNI function specification
in a boolean formula so that the SMT solver can manipulate
it. A JNI function specification consists of a possibly refined
return type, a function name, and a list of possibly refined
parameter types. Since only the parameters determine the
behavior of the JNI function, we can encode a JNI function
specification into a list of bit vectors where each bit vector
represents each possibly refined parameter type.

Definition 1 (Bit vector representation):
• (Type) Each type t is mapped to a unique bit vector

representation Bt.
• (Refinement predicate) For each refined type t@r, each

refinement predicate p in r is mapped to a unique bit
vector Bp whose on-bits do not overlap with other bit
vectors representing refinement predicates of t.

• (Refinement) For a refinement r = p1 ∧ ... ∧ pn, its bit
vector representation is Br = Bp1

| Bpn
where | is the

bitwise OR operator.
• (JNI function specification) For a JNI function specifica-

tion t1@r1 F (t2@r2, ..., tn@rn), its bit vector represen-
tation is ((Bt2 , Br2 ), ..., (Btn , Brn )) where Bti and Bri

are bit vector representations of ti and ri, respectively.
One challenge for the bit vector representation is to define

subtype relations among types. While C does not have any
subtype relations between types, JNI reference types have a
type hierarchy that corresponds to the Java type hierarchy [14].
For example, because jstring is a subtype of jobject,
a JNI function that takes a jobject argument can take a
jstring value as well.

We define a subtype relation (<:t) between two bit vectors
using the bitwise AND operator &. For the previous example,
we encode jobject and jstring into two different bit
vectors, Bto and Bts , which satisfy Bto & Bts = Bto .

Definition 2 (Subtype relation): Assume that t1 is a subtype
of t2 and Bt1 and Bt2 are bit vector representations of t1 and
t2, respectively. Then, a subtype relation Bt1 <:t Bt2 is valid.
The subtype relation is equivalent to a boolean expression,
Bt1 & Bt2 = Bt2 .

Similarly, we also define a subrefinement relation (<:r) be-
tween two bit vectors representing refinements. A refinement
r1 is a subrefinement of another refinement r2, when all the
refinement predicates in r1 are included in r2.

Definition 3 (Subrefinement relation): Assume that r1 is a
subrefinement of r2 and Br1 and Br2 are bit vector repre-
sentations of r1 and r2, respectively. Then, a subrefinement
relation Br1 <:r Br2 is valid. The subrefinement relation is
equivalent to a boolean expression, Br1 & Br2 = Br2 .

2) Satisfiability for unspecified case finding: Using encoded
JNI function specifications, we convert each JNI function spec-
ification to a boolean formula to find unspecified cases. One

complexity is that because most JNI functions take multiple
parameters, we should consider many parameter combinations.
For example, if a JNI function takes five parameters and
each parameter has ten refined types, the number of possible
parameter combinations is 105, which is a huge search space.

For practicality, we handle each parameter independently to
reduce the search space. For a JNI function F with n param-
eters, we make n functions F1, · · · , Fn where Fi takes only
the i-th parameter of F . Then, each function Fi gets converted
to a boolean formula, and the SMT solver finds unspecified
cases for each boolean formula independently. This approach
may miss some unspecified cases that are caused only by a
combination of multiple parameters. However, our experiments
showed that because most unspecified cases are due to a single
parameter, few such cases are missing.

After defining four auxiliary definitions, we define a boolean
formula to check the satisfiability of a JNI function parameter
using the auxiliary definitions. Note that we now consider only
such JNI functions that take one parameter.

Definition 4 (Complete refinement): For each type t, its
complete refinement bit vector is Bt

c that is a conjunction of
all the refinement predicates of t.

Definition 5 (Validity of refined type): A bit vector rep-
resentation of a refined type (Btx , Brx ) is valid for a type
t, if Btx <:t Bt and Brx <:r Bt

c. A logical predicate
valid((Btx , Brx), t) is true only when (Btx , Brx ) is valid for
the type t.

Definition 6 (Equivalent type satisifiability): A bit vector
representation of a refined type (Btx , Brx ) is equivalent
type satisfiable to another bit vector representation (Bty ,
Bry ), iff Btx = Bty and Brx <:r Bry . A logical predicate
sateq((Btx , Brx), (Bty , Bry )) is true only when (Btx , Brx )
is equivalent type satisfiable to (Bty , Bry ).

Definition 7 (Subtype satisifiability): A bit vector rep-
resentation of a refined type (Btx , Brx ) is subtype sat-
isfiable to another bit vector representation (Bty , Bry ),
iff Btx <:t Bty and Btx 6= Bty . A logical predicate
satsub((Btx , Brx), (Bty , Bry )) is true only when (Btx , Brx )
is subtype satisfiable to (Bty , Bry ).

Using the auxiliary definitions, we define a boolean formula
for the parameter satisifiability solved by the SMT solver.
Assume that a JNI function declaration is t1 F (t2) and the bit
vector representation of its specification is (Bty , Bry ). Then,
we can define its satisfiability problem as follows:

∃(Btx , Brx). valid((Btx , Brx), t2)→
¬( sateq((Btx , Brx), (Bty , Bry ))
∨ satsub((Btx , Brx), (Bty , Bry )))

The formula represents that there is a valid parameter (Btx ,
Brx ) that is matched with the JNI function parameter type
t2 but not covered by the specification (Bty , Bry ). When
the SMT solver concludes that this formula is satisfiable, it
produces an example such as (Btz , Brz ) as a result repre-
senting an unspecified case that is not covered by the current



specification. Then, we record the unspecified case and update
the formula by adding it as follows:

∃(Btx , Brx). valid((Btx , Brx), t2)→
¬( ( sateq((Btx , Brx), (Bty , Bry ))

∨ satsub((Btx , Brx), (Bty , Bry )))
∨ ( sateq((Btx , Brx), (Btz , Brz ))
∨ satsub((Btx , Brx), (Btz , Brz ))))

Thus, in the next iteration, the SMT solver tries to find
another unspecified case except for ones discovered previously.
When the SMT solver fails to find more unspecified cases, it
concludes that the formula is not satisfiable, implying that the
updated specification covers all the valid parameters.

D. Test Case Generation and Testing on JVMs

One difficulty in the test code generation phase is to
generate valid test code. As described in Section II, in JNI
programs, C code leverages a sequence of JNI function calls
to interact with Java modules. To investigate behaviors caused
by unspecified cases, generated test code should contain JNI
function call chains that do not introduce run-time errors
caused by other factors such as invalid arguments, unintended
unspecified cases, and so on. Random test generation is widely
used, but it is not suitable for our purpose; it produces too
many wrong JNI function call chains that cause run-time errors
unrelated to unspecified cases.

The Test Code Generator utilizes both “a JNI function
mapping table” and “template code” to generate valid test
code. Firstly, it constructs a mapping table by matching each
refined parameter type of JNI functions with a refined return
type of other JNI functions. For example, if a first refined
parameter type of a JNI function foo is matched with a refined
return type of another JNI function bar, the mapping bar
→ foo@1 is added to the table; it denotes that the return
value of bar can be used for the first argument of foo.
JNI functions often take values of primitive types such as
integers and character arrays as arguments, and some primitive
types may not have matching JNI functions that have them as
return types. Therefore, for primitive types, we manually write
template code that consists of functions that return values of
primitive types according to refined parameter types. With the
mapping table and the template code, Test Code Generator
generates valid C test code for unspecified cases by building
valid JNI function call chains and propagating valid arguments
for refined parameter types. We compile the generated C test
code and link it with Java modules we developed to build
executable JNI test programs. Note that we focus on only C
test code while JNI supports both C and C++ because all the
mainstream JVMs handle the JNI interoperation for C and
C++ in the same way.

For testing on multiple JVMs, we install each JVM on an
individual Docker container [15] and execute the generated
test code on each container. Because different JVMs print
execution results in different formats, we develop a result
parser for each JVM to translate its execution result to a unified

TABLE I: Evaluation results of the -Xcheck:jni option on five
JVMs for 34,990 unspecified cases

Category HotSpot OpenJ9 Zulu Corretto GraalVM

Misbehave 4,922 445 4,918 4,918 4,918
SegFault 1,050 567 1,050 1,050 1,010
Exception 24,338 23,377 24,339 24,339 24,339
Validation 4,680 10,601 4,683 4,683 4,723

format. Then, Test Result Assembler classifies the execution
results into four categories: Misbehave, SegFault, Exception
and Validation. The Misbehave category represents that test
code terminates normally without any warnings or errors.
Since behaviors of unspecified cases are not defined, each JVM
may produce different execution result from one another for
an unspecified case. The SegFault and Exception categories
represent that test code causes a segmentation fault and an
exception thrown, respectively, and the Validation category
represents that test code terminates with an error or a warning
produced by the debug feature as its validation result. In
addition, Test Result Assembler compares the execution results
of the JVMs to identify different debugging capabilities of the
JVMs.

IV. EVALUATION OF THE JNI DEBUG FEATURE ON JVMS

A. Evaluation Results for Unspecified Cases

To evaluate the debug capability of mainstream JVMs,
we chose five JVMs based-on their popularity [16]: Oracle’s
Hotspot, IBM’s OpenJ9, Azul’s Zulu, Amazon’s Corretto, and
Oracle’s GraalVM. Among various Java versions, we chose
Java 11, since its popularity is ranked the second following
Java 8 and all five JVMs have implementations for Java 11.

Table I shows the categorized evaluation results on the five
JVMs for the test programs. JUSTGEN generated 34,990 test
programs for unspecified cases from the JNI specification
within 403 seconds. As Table I indicates, the evaluation
results are very similar between JVMs except for OpenJ9,
because they are variants of OpenJDK. Even though they have
similar evaluation results, we believe that analyzing them is
significant because different vendors support them. OpenJ9
validated much more unspecified cases than the others, but
it validated only 30.3% of the unspecified cases. The other
JVMs validated only 13.4%. In most cases, when JVMs do
not validate unspecified cases, they let test programs terminate
with exceptions. Throwing exceptions may be helpful for
developers diagnose the problems, but segmentation faults may
not be useful to point out where the problems occur. Moreover,
misbehaviors may make the problems undiscovered, which can
lead to unexpected behaviors.

In the following subsections, we report our empirical study
results for unspecified cases in the categories of misbehaviors
and segmentation faults. In addition, we discuss the differences
in the debug capability of the JVMs, the unspecified cases that
were not validated by all of the JVMs, and threats to validity.



B. Category: Misbehave

We manually investigated the unspecified cases in the
Misbehave category. Since there are many unspecified cases
as shown in Table I, it is impractical to investigate them
all. Instead, we chose one unspecified case for each param-
eter of JNI functions. In addition, for JNI function families
that provide the same functionality for different types such
as CallVoidMethod, CallIntMethod, and so on, we
randomly selected one of them. Finally, we manually investi-
gated 132 unspecified cases for Hotspot, Zulu, Correctto, and
GraalVM, but only 17 cases for OpenJ9 because it has a small
number of Misbehave cases.

1) In All the JVMs: We found two cases where all five
JVMs failed to identify unspecified cases.

Finding 1: Error handling using return values of JNI
functions is not reliable.

Some JNI functions return values that indicate the success
or failure of their execution, but they may not return correct
results. One example is RegisterNative that registers
native functions. According to the specification, the function
should take a positive number of native functions, and return
0 on success and a negative value on failure. However, all
five JVMs failed to validate the case when the function takes
no native functions. Moreover, in such cases, while OpenJ9
returns -1, the other JVMs return 0 indicating the execution
success. Thus, relying on return values of JNI functions to
handle execution failures is not reliable.

Finding 2: Deleted references are not completely
validated.

Using deleted objects may lead to unexpected behaviors, but
JVMs do not validate it completely even with the debug
feature enabled. For instance, GetObjectRefType receives
a Java object and returns the reference type of the object.
One of our test code passed a deleted Java object as an
argument to GetObjectRefType, which is an unspec-
ified case. Even though the JNI specification states that
GetObjectRefType should not use deleted objects, we
found that the function returns the object type as a local
reference on OpenJ9, while the other JVMs successfully detect
the case. We reported the problem to IBM and it is now fixed.
On the contrary, when a deleted object is stored in an array
using SetObjectArrayElement, OpenJ9 detects this case
but the other JVMs cannot detect it. Thus, all the VMs failed
to validate them completely.

2) In four JVMs: We report six cases where all JVMs
except OpenJ9 failed to identify unspecified cases.

Finding 3: Methods may be treated as constructors.

According to the JNI specification, the name of constructors
should be <init>. However, our test code revealed that when
we call GetMethodID with a method whose name is NULL,
the function returns the method ID of a constructor on all
JVMs except for OpenJ9. We found out that the JVMs return

the method ID of a constructor only if there is a constructor
that satisfies the method signature passed to GetMethodID
as a fourth argument.

Finding 4: Java objects may be incorrectly initialized.

In JNI programs, native code can create Java objects using
NewObjectV. While the specification states that the method
ID of a constructor should be passed to NewObjectV, all
JVMs except OpenJ9 cannot detect such cases when the
method ID of a non-constructor is used and simply create an
object using the non-constructor.

Finding 5: Native code may call Java methods with
ill-typed Java objects.

We observed several unspecified cases where native code call
a Java method with a Java object that has a different type from
what the method expects. One such an example is calling a
Java method with a receiver object of an incorrect type using
CallNonvirtualIntMethod. All JVMs except OpenJ9
cannot detect such cases. Even though Java provides strong
type checking, native code can break its type system.

Finding 6: Array elements may be updated with values
of incompatible types.

We observed another case that JNI programs break the Java
type system. The ReleaseBooleanArrayElements JNI
function takes a Java array object as a second argument,
and a pointer to array elements as a third argument. If
this function takes 0 as its fourth argument, it copies the
values of the pointer to the Java array object and frees the
memory pointed by the pointer. According to the specification,
the pointer used by ReleaseBooleanArrayElements
must be derived by the GetBooleanArrayElements
function. However, one of our test code passed a pointer
that is derived by the GetIntArrayElements function to
ReleaseBooleanArrayElements, and all JVMs except
OpenJ9 could not detect it and copied the values of the pointer
to the Java array object with an incompatible type.

Finding 7: JNI functions may change return values of
Java methods.

While native code should use CallIntMethod to call
Java methods that return integers, our test code invoked
CallIntMethod with a Java method that returns values of
type Float, which was detected only by OpenJ9. In all the
other JVMs, the return value of the Java method was unexpect-
edly changed. For example, when a Java method returns 3.5f
of type Flot, the native code invoking CallIntMethod
returned 1080033280, which is very different from 3.5f.

Finding 8: An object can be popped from a local
reference frame even when no local reference frame
exists on the stack.

The PopLocalFrame JNI function takes a local reference
object, pops off the current local reference frame, and re-
turns a local reference in the frame for the given object.



However, we found that if a global reference is passed
to PopLocalFrame, the JVMs except for OpenJ9 behave
abnormally: i) the global reference object was returned when
the function is supposed to return local reference objects only,
and ii) the object was returned even when no local reference
frame exists on the stack.

3) Only in OpenJ9: We found four cases where only
OpenJ9 failed to identify unspecified cases. We reported them
all to IBM, and they are all fixed 2.

Finding 9: Invalid Java objects can be constructed with
incorrect class names, and they lead to segmentation
faults in subsequent JNI function calls.

The FindClass JNI function takes a fully-qualified class
name and returns a class object, but OpenJ9 constructs Java
class objects even with incorrect class names. Our test code
called FindClass with an incorrect class name, and OpenJ9
constructed a class object and returned it to native code without
any error or warning. However, once the JNI program uses the
class object, it results in a segmentation fault.

Finding 10: Local references can be created with a
negative capacity.

According to the specification, EnsureLocalCapacity
should take the capacity of a local reference, which must
not be negative. However, our auto-generated test code called
EnsureLocalCapacity with -5 for the capacity, which
was OpenJ9 did not detect. OpenJ9 silently generated a new
local reference object without any error or warning.

Finding 11: Invalid JNI function calls may be silently
ignored.

We observed that OpenJ9 sometimes silently ignore unspeci-
fied JNI function calls. One such an example is to change the
value of a static field of an object using SetObjectField,
which should change the value of only non-static fields.
OpenJ9 did not catch this unspecified case but silently ignored
the illegal operation.

Finding 12: JNI Programs may not terminate.

We found one bug in the debug feature of OpenJ9
that caused JNI programs to not terminate. When our
test code releases NULL as array elements using the
Release<type>ArrayElements JNI function, the code
does not terminate because of a deadlock between mul-
tiple threads. One thread holds a VM access and tries
to enter MemMonitor, while the other thread already in
MemMonitor tries to acquire the VM access to exit JVM.
As we discussed, IBM fixed the bug after our report.

C. Category: SegFault

In addition to abnormal behaviors described so far, we
observed that unspecified cases can cause segmentation faults
due to the lack of validation from the -Xcheck:jni option.

2https://github.com/sjmini/justgen/blob/main/README.md.

The root cause of the segmentation faults is accessing illegal
memory locations, and attackers can exploit such defects to
hijack the control flows of the programs [17]. Therefore, we
consider them as potential security vulnerabilities.

Table I shows the number of unspecified cases that caused
segmentation faults for each JVM. As the table shows, 567
unspecified cases provoked segmentation faults in OpenJ9,
1,011 cases in GraaalVM, and 1,051 cases in the other JVMs.
We manually investigated them to understand which properties
were not validated, and Table II summarizes the results.

We categorized the segmentation faults into four reasons:
Type Check, NULL Check, Liveness Check, and Releasability
Check. For OpenJ9, the lack of NULL Check is the main reason
with 74.5% of segmentation faults. For the other JVMs, the
primary cause of the segmentation faults is the lack of Type
Check; 76.1% of the segmentation faults on HotSpot, Zulu,
and Corretto, and 75.2% on GraalVM are due to missing
type checks. The second major reason for segmentation faults
on OpenJ9 is missing Liveness Check. Especially, when JNI
functions use deleted references, only OpenJ9 cannot detect
them, which amounts to 11.8% of the segmentation faults on
OpenJ9. Moreover, we also observed unspecified cases where
unreleasable arrays are released by JNI functions such as
ReleaseCharArrayElements. Due to the space limitation,
we provide detailed information on each unspecified case in
a companion report [18]. We found that these unspecified
cases can be detected only by OpenJ9, and the other JVMs
throw segmentation faults. We reported the segmentation fault
problems to JVM vendors and 415 unspecified cases have been
fixed so far and more fixes are on their way.

Another interesting point we found is that HotSpot, Zulu,
and Corretto have the same number of segmentation faults. Our
analysis on these cases concluded that the -Xcheck:jni option
of these JVMs validate the same properties. On the other hand,
OpenJ9 behaves quite different from the other JVMs. Overall,
the -Xcheck:jni option on OpenJ9 validates more properties
than the other JVMs. In the next subsection, we further analyze
the differences between JVMs.

D. Differences between JVMs

We now compare the debug capability of five JVMs. As
discussed in the previous subsection, the debug capability of
OpenJ9 is different from that of the other JVMs. On the
contrary, the other four JVMs show similar debug capability.

Our evaluation results show that there are 6,499 unspecified
cases that OpenJ9 validates correctly, but HotSpot misses.
Conversely, there are 578 unspecified cases that HotSpot
validates, but OpenJ9 misses. For those 6,499 and 578 un-
specified case, we chose representative case as we did in
Section IV-B and manually investigated them to understand
the debug capability of Hotspot and OpenJ9. The analysis
results are summarized in Table III, where O indicates that
the -Xcheck:jni option of the JVM properly validates the
unspecified case, and X indicates that the JVM does not
validate the unspecified case. The table clearly shows which
unspecified cases can or cannot be validated by HotSpot and



TABLE II: Root causes of segmentation faults

Root Causes Unspecified Cases HotSpot OpenJ9 Zulu Corretto GraalVM

Type Check
Call ill-typed objects’ methods 720 0 720 720 680
Define classes with ill-typed classloaders 0 40 0 0 0
Use reflection with ill-typed objects 80 38 80 80 80

NULL Check

Call methods with NULL arguments 30 30 30 30 30
Call methods using a NULL method ID 0 372 0 0 0
Access fields using a NULL field ID 18 18 18 18 18
Get fields of a NULL object 0 1 0 0 0
Get field/method IDs using a NULL signature 166 0 166 166 166
Get field/method IDs and classes from a NULL object 29 0 29 29 29
Get strings into a NULL destination buffer 1 1 1 1 1

Liveness Check

Call objects’ methods using deleted references 0 60 0 0 0
Compare types between a live and a deleted reference 0 3 0 0 0
Set fields with deleted references 0 1 0 0 0
Define classes with deleted a reference name 0 1 0 0 0
Get field/method IDs using a deleted reference 0 2 0 0 0

Releasability Check Release unreleasable arrays 6 0 6 6 6

Total 1,050 567 1,050 1,050 1,010

TABLE III: Debug capability of Hotspot and OpenJ9

Causes Unspecified Cases Hot J9

Type

Define classes with wrong typed classloaders O X
Get classes using a wrong class descriptor O X
Throw exceptions using non-throwable objects O X
Call methods with unmatched return types X O
Create objects with array classes X O
Use reflection for fields using wrong typed objects X O

NULL

Iniailize objects using a NULL method ID O X
Get fields of a NULL object O X
Call methods of a NULL object X O
Call methods using a NULL method ID O X
Get field/method IDs of a NULL object X O
Get field/method IDs using a NULL signature X O
Get field/method IDs using a NULL name X O
Release a NULL string X O

Liveness

Get types from deleted references O X
Put deleted references into an array X O
Call objects’ methods using deleted references O X
Compare types between a live and a deleted reference O X
Pop a local frame from an empty frame stack X O

Modifier
Access non-static fields using a static field ID O X
Access static fields with a non-static field ID O X
Call private methods of super classes X O

Negative
Integer

Set a negative capacity of local frames O X
Access a negative index of arrays X O

Constructor Initialize objects using non-constructor methods X O
Releasability Release unreleasable arrays X O

OpenJ9. It shows three new causes: Modifier, Negative Integer,
and Constructor. The Modifier cause denotes when JVMs do
not check the correct use of modifiers such as static, and
public. For example, such a case when a JNI function uses
a static field ID where a non-static field ID is expected
belongs to the Modifier cause. OpenJ9 cannot validated them
whereas Hotspot can. The Negative Integer problem is when
a negative number is used where a non-negative number is
expected. For instance, we found that OpenJ9 cannot identify
creation of a local frame with a negative capacity, while
Hotspot validates it. We also observed an inverse case. OpenJ9

TABLE IV: Unspecified cases not validated by JVMs

Causes Unspecified Cases

NULL Check
Call methods with a NULL argument list
Access static fields using a NULL field ID
Copy a string value into a NULL buffer

Size Check Push a zero-sized local frame into a frame stack
Register zero number of native functions

Type Check Use reflection for methods using wrong typed objects

throws an error message when accessing a negative index of
array, but Hotspot cannot validate it. The Constructor problem
is initialization of Java objects with non-constructor functions.
OpenJ9 detects the problem when a non-constructor method
ID is used to create a Java object, but Hotspot cannot.

We found no unspecified cases that HotSpot validates, but
Zulu, Corretto, and GraalVM misses. However, we found three
unspecified cases that Zulu and Corretto validate, but HotSpot
misses. Similarly, we found 43 unspecified cases that GraalVM
validates, but HotSpot misses. We manually investigated all
those 3 and 43 unspecified cases, and our analysis revealed
that they are due to the use of deleted objects and ill-typed
objects, respectively.

Our evaluation results show that the debug features of differ-
ent JVMs check different properties, and therefore validating
JNI programs on multiple JVMs especially OpenJ9 and one of
the others would be desirable. We provide detailed description
of each unspecified case in a companion report [18].

E. No Validation from Any JVMs

We observed that 23,880 unspecified cases are not validated
by any JVMs. Among them, all JVMs throw exceptions for
23,367 cases, but no JVMs throw exceptions for the remaining
513 cases. We believe that they are problematic cases because
even the -Xcheck:jni option cannot validate them on any
JVMs. We further analyzed them to understand what properties



are not validated by any JVMs. The analysis results are
summarized in Table IV.

As shown in the table, their root causes have three cate-
gories. The first category is missing NULL check. We found
that a large number of cases are due to the missing NULL check
of jvalue. It seems that no JVMs properly validate argument
lists like jvalue. Because dereferencing null values may
cause significant errors, we believe that all JVMs should
validate them. The other two categories are missing size check
and type check. For example, the FromReflectedMethod
JNI function expects to receive an object of type
java.lang.reflect.Method/Constructor. If it re-
ceives an object of different type, JVMs should throw
an error. However, no JVMs validates this property. It is
particularly strange that OpenJ9 does not validate such a
case because it throws an error for similar cases. For in-
stance, the FromReflectedField JNI function does not
receive an object of type java.lang.reflect.Field,
OpenJ9 throws an error with the following message: Argu-
ment #2 is not a subclass of java/lang/reflect/Field. OpenJ9
should throw an error with an appropriate message for the
FromReflectedMethod function as well.

F. Threats to Validity

To evaluate the quality of the -Xcheck:jni option on main-
stream JVMs, we leveraged unspecified cases. We adopted
a systematic and automated approach to find unspecified
cases from the JNI specification. The only manual part in
finding unspecified cases is transforming the JNI specification
into our DSL. Manual transformation may contain human
errors leading to incorrect transformation. However, we believe
that our transformation is correct because we considered
only Chapter 4 of the JNI specification, which is written in
a well-structured style using specific patterns. Furthermore,
we manually investigated automatically produced results by
JUSTGEN. Our manual investigation confirmed that the re-
sults are accurate, which indicates that the JNI specification is
correctly transformed. The results of our manual evaluation are
trustworthy because external reviewers such as JVM vendors
validated them as well. Note that if the specification is written
in a structural way like the JavaScript specification, it may be
possible to make JUSTGen fully automatic [19].

Finally, because the transformed specification in the DSL is
publicly available, researchers can reuse and validate it. Note
that JUSTGEN does not prove the correctness of -Xcheck:jni
implementations, but tests them, which may lead to false
positives and false negatives.

V. RELATED WORK

JVM Verification. Testing JVMs to ensure that they work
consistently with each other is crucial to support Java’s
slogan “Write Once Run Anywhere.” The existing research
proposed methodologies to automatically generate test cases
for verification of JVMs. Sirer and Bershad [20] developed
lava, a domain specific language for specifying production

grammars to generate test cases for a JVM. They demon-
strated the effectiveness of lava when it is used with other
testing techniques by showing high code and value coverage
achievements. Yoshikawa et al. [21] implemented a generator
for Java classes that is finite and executable on the Java runtime
environment. Similarly, Chen et al. [22] introduced classfuzz,
which generates invalid Java classes to reveal defects in the
startup processes of JVMs. classfuzz leverages predefined
mutation operators to mutate seeding Java classes and Markov
Chain Monte Carlo (MCMC) sampling to select appropriate
mutation operators. On the other hand, classming [23] also
proposed by Chen et al generates executable Java classes in
order to verify execution engines of JVMs. classming also
leverages mutation operators to change the control and data
flows of bytecode to generate semantically different test cases.
Freund and Mitchell [24] introduced a type system to generate
Java classes that can test an implementation of a bytecode
verifier.

Even though the above research can generate efficient test
cases for verifying startup processes, execution engines, and a
bytecode verifier of JVMs, they are not suitable for verifying
implementations of JNI interoperations on JVMs. Indeed, no
research exists that proposes an efficient technique to generate
test cases for testing JNI interoperations.

JNI Verification Researchers have tried to improve the safety
and reliability of JNI programs. Several papers address the
discrepancies in exception handling of Java and native code.
The exceptions from native code of JNI programs do not get
handled by JVMs immediately, but they are handled by JVMs
only after the native code finishes its execution. Such different
semantics can lead to mishandling of exceptions in JNI pro-
grams. Li and Tan [25] proposed a static analysis framework
that examines exceptions and identifies bugs in JNI programs.
Tan [26] proposed an operational semantics for a core of
the JNI. The work includes the formal semantics of handling
shared heap during cross-language function calls, exception
handling, and garbage collection. Because programs written
in C may be unsafe due to the lack of type system while
programs written in Java are type-safe, native code written in
C may make JNI programs unsafe. To ensure type safety of JNI
programs, Tan et al. [27] proposed SafeJNI. Tan and Croft [28]
also performed an empirical study of native codes in JDK.
Leveraging a large number of native code in JDK with various
static analysis techniques and manual inspection, the authors
identified new bugs and security issues in the native code of
JDK. Gu et al. [29] demonstrated another security issues in JNI
programs. They introduced the JGRE attack and proposed a
defense mechanism. Wei et al. [30] proposed a static analysis
framework that can analyze JNI programs. They introduced
JN-SAF that performs an inter-language dataflow analysis to
find security flaws in JNI programs. Lee et al. [31] devised
a static analysis technique utilizing both modular and whole
program analyses to analyze multilingual programs. Using the
technique, they proposed a static analyzer that detects possible
programmer errors in JNI interoperation.



Even though the existing research attempted to improve
the safety and reliability of JNI programs, none of them
systematically studied the unspecified behaviors in the JNI
specification and their actual implementations on mainstream
JVMs.

VI. CONCLUSION

JVMs provide a powerful run-time debug feature, the
-Xcheck:jni option, for developers to detect interoperation
bugs in JNI programs. However, some bugs may remain
unidentified even after intensive testing, due to the insufficient
validation capability of the debug feature. In this paper, we
present a semi-automated approach to evaluate the validation
capability and impacts of the -Xcheck:jni option on various
JVMs. From the JNI specification, we manually translated the
core functionality of JNI functions to our DSL, JUSTGEN
automatically discovers unspecified cases and generates test
code executing the cases. Then, we execute the test code on
five mainstream JVMs and categorize the execution results to
assess their validation capability. In our empirical evaluation,
JUSTGEN discovered 34,990 unspecified cases that the JNI
specification does not cover. We identified that 5,972 unspec-
ified cases could not be validated by Hotspot’s debug feature,
5,968 by Zulu and Corretto, 5,928 by GraalVM, and 1,012 by
OpenJ9. These unspecified cases can cause ciritical run-time
errors due to violation of the Java type system and memory
corruption. We reported the validation issues of the debug
feature to corresponding JVM vendors with 792 unspecified
cases, and 563 cases among them have been fixed and the
remaining ones are planned to be fixed. We believe that our
study improves the validation capability of the -Xcheck:jni
option and the quality of JNI programs.
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